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Associated Legendre functions of half-odd degree and arguments larger than one,
also known as toroidal harmonics, appear in the solution of Dirichlet problems with
toroidal symmetry. Itis shown how the use of series expansions, continued fractions,
and uniform asymptotic expansions, together with the application of recurrence re-
lations over degrees and orders, permits the evaluation of the whole set of toroidal
functions for a wide range of arguments, orders, and degrees. In particular, we pro-
vide a suitable uniform asymptotic expansion®j¥(x) (for largem), which fills the
gap left by previous methods.@ 2000 Academic Press
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INTRODUCTION

Associated Legendre FunctiofiB"(z), QT'(2)} appear in the solutions in curvilinear
coordinates of the boundary value problems of potential theory for certain domains (
sphere, spheroid, torus). These are analytic functiorzsimthe plane cut along—oo, 1]
and are solutions of the differential equation

2

1-272

1-22U" —2zU + |[v(v + 1) — u=0, 1)
where, in most practical situation®,is a nonnegative integer.

Whenz e (-1, 1) (on the cut) the functionsP"(2), QI'(2)}, conveniently redefined (see
[15], Eq. (7.12.5)), are called spherical harmonics (SH) wheand m are nonnegative
integers; they appear in the solutions of the Dirichlet problem for a sphere. Spheri
harmonics are well-known functions for which accurate and extensive methods of evalua
for wide ranges offi (degree) andn (order) have been described (see Olver and Smith [19]

Off the cut, Associated Legendre Functions (ALF) are the natural basis to solve
Dirichlet problem for domains bounded by spheroids and tori. In particular, wheamd

204

0021-9991/00 $35.00
Copyright(© 2000 by Academic Press
All rights of reproduction in any form reserved.



COMPUTATION OF TOROIDAL HARMONICS 205

m are positive integerg,P"(x), QT'(x)} for x > 1 appear for prolate spheroidal domains,
{P(ix), QN'(ix)} for x > 0 solve the boundary problem for an oblate spheroid [12] an
{P1200, Qnl1/2(X)}, x> 1 are the solutions for a torus. We will refer to these sets ¢
functions, respectively, as prolate spheroidal harmonics (PSH), oblate spheroidal harmc
(OSH), and toroidal harmonics (TH).

In particular, toroidal harmonics appear naturally in the solution of Dirichlet problen
with boundary conditions on a torus. They appear, for instance, in the expansion of vact
magnetic fields in stellators and tokamaks [16] (see also [17]) and they also provide ¢
lytical solutions of Poisson’s equation for realistic shapes of ion channels [13, 14]. B«
functions P, Q) for different ordersif) and degrees and fixed values of appear when
solving Dirichlet problems for a region bounded by a torus.

Contrary to spherical harmonics, there are few references concerning the numerical ¢
uation of PSH, OSH [12] and TH [21]. Previous to the methods presented in [11, 12, 2
the only codes for the numerical evaluation of ALF off the cut (including PSH and Tt
were built by Gautschi in 1965 [9], based on three-term recurrence relations and Mille
algorithm. Fettis (1970) [7] describes a method for TH which is a generalization of Gaus:
Landen’s transformation for computing elliptic integrals; such method is potentially use
for small values of the argument and fixedm.

Recently, Fortran codes to evaluate PSH, OSH [12] and TH [21] were built. By usi
recurrence relations, combined with the use of continued fractions and Wronskian relati
codes for the evaluation of PSH and OSH whose range of applicability was only limited
the overflow numbers of the machine were developed. On the other hand, the same
of techniques applied to TH [21] gave rise to codes with a relative accuracy &t f a
wide region in the(x, m) plane, but restricted for too large valuesmofandx. Despite its
limitations, the code in Ref. [21] improves Gautschi’'s scheme and clearly outperforms
computations based on series expansions ([13, 16]).

In this paper, we present a uniform asymptotic expansioRJtix) with v fixed (real and
noninteger) and large (m € N), which is uniformly valid for large positive. A method
to compute THs can then be given which significantly improves the range of applicabil
of the code in Ref. [21]. In this way, a scheme to compute THs for wide range of intec
orders, half-odd degrees, and real arguments (larger than one) is provided.

RECURRENT SCHEMES TO EVALUATE TOROIDAL FUNCTIONS

Both Legendre functionB"(x) and Q'(x) satisfy the recurrence relations

v-—m+DP,(X) — v+ DxPX)+ @ +mP,(x) =0 (2)
and
2
P (x) + ﬁ PM"X)— (v —m+ D+ mP" ! =0. (3)

By using Perron’s theorem[10, 22] itis seen that both recurrences (Egs. (2) and (3)) ac
a minimal solution whex > 1: for Eq. (2),Q}"(x) is minimal andP"(x) is dominant; for
Eq. (3),P,"(x) is minimal andQ!'(x) is dominant.

This dual behavior of th& andQ functions with respect to recursion will be fundamen-
tal in order to build stable algorithms. Another consequence derived from the existenc
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minimal solutions is given by Pincherle’s theorem ([3, 18]) which guarantees the conv
gence of the continued fraction for the ratio of consecutive minimal solutions. Thus, t
continued fractions given by the iteration of the expressions

_ Q' 1
HQ(V, m, X) = Il.)n_l(x) = 2041y v-mil QT+1(X) ) (4)
v+m v+m  QM(x)
and
P™(x) w—m+Dw+m)
Hp(v, m, X) = ST T (5)
" (x) 2mx + P (X)
Vx2-1 P(x)

are convergent fox > 1. The CF from Eq. (4) is more rapidly convergentabecomes
larger, while the convergence of the CF in Eq. (5) is fasterlascomes smaller (but> 1).
In other words, the numerical convergence of Eq. (4) may fail whisrtoo close to 1 while
Eq. (5) converges slowly for large

Except for the possible convergence failures of the continued fractions, algorithms for
computation of the sefP; ,(x), QiL;2(X),x>1,n=0,1,...,N,m-0,1,..., M}
can be based on the calculation of two values to “feed” the recurrences, the stable
plication of the recurrences (Egs. (3), (2)) both for e and the @, and the application
of the Wronskian relations

r
PI)QTL1(x) — P () QT (X) = %(—Dm (6)

Fv+m+1) (-Hm
Tbo—m+1)/x2—1

A simple example for evaluating such a setis provided by the following scheme (DTORI
in [21]), which we will call theprimal algorithm:

PP QM (x) — PM(x)QIN(x) = @)

(A) EvaluaterE“l/z, m= M, M — 1 by using the following scheme:

1. Obtain the starting valueQ?l/2 and Q£1/2 through their relation with elliptic
integrals (evaluated by using Carlson’s duplication theorem [4, 5]).

2. Apply the recurrence Eq. (3) f@ up to the ordeM.

3. Combine the values @", , andQ", 5 with the Wronskian relation (7) and the CF
(5) to getPM ,.

4. Use the CF (4) to obtai@}), from QY, , and then obtaiP{}, from Eq. (6) and the
already calculated valuegT, , andP" ,.

(B) Evaluate the setP;,,n=0,1,...,N,m=0,1,.., M}:
1. Obtain{Pf} ,.m=0, 1, M} starting fromP}} , and P} 3 and applying the re-
currence Eq. (3) backward.

2. Foreactm, use Eq. (2) forwardtoevalugtey ; ,,n=0,1,...,N,m=0,1,.., M},
starting from the already evaluated vall&§ ,.

(C) Evaluate the setQ’ ;,,n=0,1,...,N,m=0,1,.., M}

1. ObtainQf,_;, andQf, _s/,, k=0, 1 from the value®¥_, ,, Qk_5, and using the
Wronskian (6) and the CF (4) fa®¥,_;,,/ QY _s/-
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2. Generate the s¢QY_;,,,m=0,1,..., M} starting fromQ‘,’qfl/2 and thl/z and
applying (forward) recurrence (3).

3. Similarly, generate the s¢QY_;,,m=0,1,..., M} starting from Q‘,’\,_3/2 and
Qll\l—3/2'

4. Foreaclm=0,1,..., M andstarting from the valu&dy _, , andQY_; , obtain the
set{Qnm_l/z, n=0,1,...,N, m=0,1,.., M} byapplying (backward) the recurrence (2).

The conflictive point in the algorithm presented lies in the different convergence of t
continued fractions foP™ ,/PY 7, QM,/QM, , and Qk_;,/Qk_s/5, k=0, 1. While
the first one converges better for smalihe latter converges faster for largeNumerical
experiments show that for> 1.001 the CFs for th€s converge reasonably well, while the
CF for thePs starts to find problems for> 20. Hence, we have to find an alternative way
of obtainingP™; , for largex. We will see how a series expansion and a uniform asymptot
expansion for largen are enough to solve the computational problems at large

Adual algorithm can be constructed by following a parallel scheme but with the followir
translations: change by Q, the recurrence overby recurrences oven, and the Wronskian
relating consecutive ordermf by the Wronskian relating consecutive degre®s Ifr this
way, the starting point would be the vaIuB§1/2 and Pfl/z, and the forward recurrence
(2) would be applied together with a CF f@?\,fl/z/Qﬁ,fg/z and a Wronskian relation in
order to obtairQONfl/z, and so on. In this case, the four CFs that would come into play a
Q(l)\l—l/z/ Q?\I—B/Z' Pﬁfl/z/ Pﬁ—l/Z' Pklfl/z/ Pl?—l/Z' k=0, 1.

The duality betweerP and Q functions becomes manifest by considering Egs. (8.2.7
and (8.2.8) in [1]. For the particular case of integer orders and half-odd degrees, we
combine (8.2.8) with (8.2.1) and (8.2.3) to obtain the relation

3/2

V2r(n —m+1/2)

Q1o = (=D)" O = DYAPR_1 (0, ®)

where = x/+/x? — 1. From this and Egs. (4) and (5), we observe tigtn — 1/2, m, 1) =
(m—n+1/2)Hp(m—1/2, n, X); then, the rate of convergence of the continued fraction
appearing in the two algorithms (primal and dual) can be related. In particular, the contin
fractions for theQs used in the primal algorithm will converge with equal speed as the CI
for the Ps in the dual algorithm wher = 1, that is, wherx = /2. On the other hand, the
convergence of th€®-continued fraction is faster than the convergence oRkmntinued
fraction whenx > /2 and vice-versa. For this reason, we use the primal algorithm whe
X > +/2 and the dual one when<x < /2.

From now on, we are only considering the primal algorithm, taking+/2. All the
discussions that follow will have their counterpart for the dual algorithm whex & /2,
given Eg. (8).

For x > +/2 the Q-continued fractions converge fast; however, the continued fractic
P 3/P" 3 becomes very slow whex becomes large. Therefore, we need to replac
this continued fraction by other types of approximation: we will directly evalﬁ’ei’lﬁ2 by
some expansion (power series, uniform asymptotic expansion). The steps firthe
primal algorithm will then be replaced by direct computation wieg too large. For the
dual algorithm the same kind of change will be needed whentoo close to 1Qﬁ,_1/2
would be given by direct computation which, by considering Eq. (8), directly follows fror
the approximations we will discuss fé’rﬁ"l/z.
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In[21] (Eq. (13)) a series expansion ﬂ'e)ﬁ"l/z(x) in powers of ¥x2was used in the region
x > 5 andx/M > 0.22 in order to compute toroidal functions with an accuracy better tha
1072, The series was seen to give place to large roundoff errors Whisecame too large,
as could be expected given the fact that #® are minimal with respect to the orders
(Eg. (3)). This is why the series gives limited accuracy within limited regions. It becom
evident at this stage that an expansion for laWy@nd uniformly valid forx is needed in
order to improve the range of applicability of the method.

UNIFORM ASYMPTOTIC EXPANSION FOR PY(X), M LARGE

In this section, we discuss a uniform asymptotic expansion for largeP"(x), x > 1,
which can also be applied for large argumentgsrom Eg. (8) follows that this expansion
will also provide an asymptotic expansion fQf" ; ,(x) for largen which will be valid for
x close to 1 (to be used in the dual algorithm).

The recent literature on Legendre functions gives several examples of so-called t
form expansions, in which more than one real or complex parameter plays a role in
asymptotics. We discuss a few aspects of these contributions.

In Dunster [6] an expansion is given for large valuesnoof the conical functions
P™(z) with v = —% +it, with T € [0, Bm], whereB is an arbitrary positive constant. The
expansion is in terms of the modifidd-Bessel function, and is valid in unbounded
domains. It is obtained by using the differential equation of the Legendre functions. In
case we need fixed valuesfin particularv = —%, and Dunster’s expansion can be usec
for fixed v; it is also possible to take = 0. However, it will be difficult to obtain the
coefficients of the expansion, even for the case0, and therefore we prefer a method
described later in this section.

By using the relation (8) it follows that the asymptotic problem can be formulated
follows: to obtain an expansion @7'(x) for large values of that holds for fixedn (in par-
ticularform = 0), uniformly with respecttain an interval 1, xo) wherexg > 1is a constant.

More general expansions for this problem are obtained by Olver [20], Boyd and Duns
[2] (by using the differential equation), Ursell [23], and Frenzen [8] by using integrals. Boy
and Dunster generalized Olver’s result by accepting nonfixedlues. In our approach we
use an integral foP"(z), which is quite different from the approach used by Ursell anc
Frenzen. Our integral follows from the representation in terms of the Gauss hypergeome
function, and our method can in fact be used for other Gauss functions. As in Ursell’s paj
we use an integration by parts procedure to find the coefficients, and the expansion con
only two K -Bessel functions. Frenzen’s expansion contains an infinite seri€sBdssel
functions.

For all mentioned results, the coefficients of the expansions are complicated expressi
Olver and Boyd and Dunster give recursion relations for the coefficients, and Ursell ¢
Frenzen also give relations for computing the coefficients. For the numerical algoritl
straightforward use of the coefficients determined in this way is not possible, because
need the coefficients for large valueszafvhen considering®!"(2)) or values ofz near 1
(when considerin@!"(2)), and for stable computations all coefficients need to be expand
in terms of a certain small parameter.

For our numerical algorithm we derive an expansion that shares several features of
available expansions mentioned above, and that is quite suitable for implementation.
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give a few steps in the derivation of the expansion. We verify the accuracy and usefulr
by giving several numerical illustrations.

The starting point for our asymptotic expansion is the relatio®pf'(z), which for
integerm is directly related td®"(2) ([1], Eq. (8.2.5)), with hypergeometric functions ([1],
Eq. (8.1.2)

Pt (N ime )
v ()_F(m+1)(z~|—1 (=v,v s ,—§),

where¢ = (z— 1)/2, together with the integral representation for the hypergeometric fun
tion ([1], Eq. (15.3.1))

@+ m)

F(— 1 1,-&) = 10
(vt lmtd =) = o S rmo ) © (10)
being
1
|§:=/ @A — )™ A4 £V dt = £¥ (M, ). (11)
0
With the change of variable £ t = e we obtain
lo(m, &) = / e ™’ (u 4+ «)” fo(u) du, (12)
0
where
z+1 1—eve' ™ —1\"
=In( —= f = ) 13
* n<2_1>, oW ( u Uta ) 13)

The complication for applying standard methods from asymptotics for lerdgethe
singularity atu = —«, in particular ifo — 0, that is,z— oco. Watson’s lemma (see Olver
[20]) cannot be applied in this case. To obtain an expansion in teridsBeéssel functions,
we use an expansion df(u) that is based on values d§ and its derivatives ai =0 and
U= —a, by writing fo(u) =ag + bou + u(u + a)go(u). Then we obtain

lo(M, &) = ag®(a, v) + bW (o, v) + %Il(a, V) (14)
with

O (x,v) = N(v, m, a)KV+1/2(ma/2),
Ny (15)
(e v) = =5 N M @) (Kuiaz(Ma/2) = Kuyga(ma)2),

beingN (v, m, o) =7 ~Y2(a/ m)*+¥/20 (v 4 1)e™/2,
Integration by parts is used to obtain the intedsal

li(m, o) = /OO e ™’ (U + @)’ f1(u) du, (16)
0
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f1(u) being given by
f1(u) = u(u + @)go(u) + (v + 1)(2u + ) go(U). 17)
Notice that the integrdh has the same structure ksand the procedure can be repeatec
by writing f1(u) =a; + byu+ u(u+ @)g:i(u), and so on. We get

lo(m, o) ~ @, v) D = + Wi, )Y —, (18)
ko M ko M

asm — oo, uniformly with respect to small values @f The coefficientsy, bk are functions
of o, and are analytic at =0.
In the Appendix, we will show thaty, = 0, b1 = 2ax1/«, which allows us to write

ro+1 ! =L Ak
~ v+1/2 Mot /2 +
lo(M, @) ~ (a/m)* /2= ; Kuti+a/2(mer/2) k; e (19)
In particular, forP." with m a positive integer we get
sinalw+m+1) & > Ak
P(2) ~ (-)™* s £ Kunpme/2)y S5, (20)
1=0 k=0

withé = (z—1)/2,0 = In[(z+ 1)/(z— 1)] and the coefficients, as given in the Appendix.

The expansions derived in this section are related with the expression given in [:
(p. 465, Eqg. (12.13)). This follows from a few relations between the Legendre fun
tions. Olver’s result is supplied with an error bound for the remainder in the expa
sion. The error bound (and a bound for the quanify,1 in Olver’s expansion, which
is not present in our expansion) can be computed by using the coeffieigraad the
algorithms for these coefficients given in the Appendix. In this paper we have verifi
the accuracy by using numerical verification of computed function values; see the n
section.

COMPUTATIONAL ASPECTS

In our algorithm, the accurate calculation IéI“l/2 is a key ingredient in the evaluation
of toroidal functions for wide ranges of the parameters. We are focusing on the prin
algorithm (forx > +/2) given that the numerical discussion that follows has its counterpa
for X < +/2 by considering the dual algorithm.

In order to test the different approximations for the evaluatioR'8f, we combined the
Fortran code presented in [21], which used a combination of CF and series, with the asy
totic expansion (20). The resulting program was coded in double precision arithmetics.

We have performed a numerical study of the different strategies used in the evaluatio
P 2(x), namely: (1) recurrence relatiencontinued fraction; (2) series; (3) asymptotic
expansion. We have studied which are the overlapping regions of validity for the differe
strategies for a relative accuracy of 8 (as in [21]). This accuracy proves to be reachable
even when high orders and degrees are needed and then, consequently, the recur
relations must be applied many times. It is important to keep in mind that the recurren
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Asymptotic Expansion vs. Series
50

40 - 1

30 1

20 = —

10 -

0 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
m

FIG. 1. Pointsinthgm, x)-plane (n > 0 integerx > 1) where the numerical values of the toroidal function
P »(x) obtained by two different methods coincide (values are tested at each incr&mertt). The asymptotic
expansion is compared with series expansion for a 12 digits precision. The asymptotic expansion is evaluat
to orderm~*?; each of the 12 coefficients is expanded up to osder

are always used in their stable direction. Higher precision arithmetic should be conside
for wider ranges of the parameters to improve the performance of the CF (5), which f:
to give results with a precision better than-19for moderately largen and/orx. Also,
extended arithmetic should be taken into account (as in [19]) in order to avoid overflows
order to minimize the overflow problems, we have considered the evaluation of the functi
(asin [21] for modes 1, 2):

pm,n(x) = Pr?l]_/z(x)/ F(m + 1/2); qm,n(X) = nm_l/z(x)/ F(m + 1/2)~ (21)

In Fig. 1 we show the comparison between the evaluatiop,af using the asymptotic
expansion and the series. The asymptotic expansion is evaluated up tarordeand
each of the 12 coefficients is expanded up to ordfer_ater we will see that for practical
purposes 4 coefficients expanded up to odeare enough. We have plotted the points
where both approaches coincide up to a precision better thatt iDthe (m, x) plane.
As one can observe, the comparison fails ot 4 (due to the bad convergence of the
asymptotic expansion) and faym < 0.3 (in this case, due to the series).

In Fig. 2 the comparison between the series and the recur#eacetinued fraction is
shown. In this case, as before, the comparison failscfon < 0.3 due to the series. The
comparison is also worse asgrows given that the continued fraction starts to converg
slowly.

Finally, in Fig. 3 we compare the computation @ o using asymptotic expansion and
recurrencer continued fraction. As can be seen in the figure, the comparison faits{ar
andm < 6 (due to the asymptotic expansion) and in the caisdarge (due to the continued
fraction).

From Figs. 1, 2, and 3, we conclude that a possible strategy for the evaluatgr ©f),
for anyx > +/2 (primal algorithm) can be the following:

1. Use the CF method (stépin the primal algorithm) for moderate (x < 20).
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Continued Fraction vs. Series

20 £

10 =F— 1

0 20 40 60 80 100 120 140 160 180 200
m

FIG. 2. Same as Fig. 1, but for other methods of evaluation: the series expansion is compared with
continued fraction method.

2. Evaluatepn o(X) using the series expansion for largg(typically x > 5) but for small
m/Xx < 3.
3. Use the asymptotic expansion when the two previous approaches cannot be use

In the overlapping regions of validity of the different approximations, the selection of tt
method of evaluation would depend on the speed of the different methods.

It is worth stressing again that the performance of the continued fractions puts a limit
the attainable accuracy when large rangesi@indn are considered. The limitation of the
CF (5) was apparentin Figs. 2 and 3. Besides, one can also expect that the CF (4) will c:

Continued Fraction vs. Asymptotic Expansion
50 =

40 -

30 z

20 :

0 1 1 I 1 I I 1 1 I
0 20 40 60 80 100 120 140 160 180 200
m

FIG. 3. Same as Fig. 1, but for other methods of evaluation: the asymptotic expansion is compared with
continued fraction method.
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0 50 100 150 200 250 300 350 400 450 500
m

FIG.4. SameasFig. 1, butforother methods of evaluation: the method described in Ref. [21] (combining se
expansions with the continued fraction method) is compared with the asymptotic expansion with 4 coefficie
(given in the Appendix).

a certain loss of accuracy wheris small (in the dual algorithm). However, for the primal
algorithm > +/2), the convergence of the CF (4) is fast and then no further accumulat
errors are expected apart from those for CF (Fig. 3). Conversely, the limitation in the d
algorithm comes for the performance of the CF (4) and, as for the primal one, with the
of the asymptotic expansion the evaluation in the rangen0< 450, 0< n <450 can be
performed with a precision of 2. In this study, the ranges of andn are limited by
the overflow numbers; notice that the range M < 450 can be reached when=0 but
the range becomes more limitedragcreases (see [21] for more details on the availabls
ranges for an overflow number 6f10°%).

In Fig. 4 we compare the evaluation pf, o(x) by using series fox > 5 andx/m > 0.3
and recurrence relatiop CF for the rest of thém, x)-plane, with the evaluation qfp 0(X)
by the asymptotic expansion (using the 4 coefficients explicitly shown at the end of
Appendix). We observe that for a precision of 10the asymptotic expansion with 4 coef-
ficients is able to cover the area were the CF is not able to reach the necessary precision
area was not accurately computable using series or CFs, as discussed in Ref. [21]. We
observe that the uniform asymptotic expansion can substitute the use of series or the CF\
they fail, namelyx/m < 0.3 andx > 15. Furthermore, it can be used in the whole regior
X >7,m>80. As shown before, as more coefficients and more terms in the expansior
these coefficients are considered, the asymptotic expansion can be applied for smaller o
and arguments. The number of the coefficients and the number of terms for each coeffic
selected for an specific implementation of the method will depend on the timing of the c
ferent approaches (series, CF, asymptotic expansion) in the overlapping regions of vali

CONCLUSIONS

We have presented a scheme to compute toroidal harmonics for wide ranges of
parameters. By complementing the method presented in [21] with a uniform asympitt
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expansion forP, 1/2(X) valid for largem and uniformly valid for largex, the toroidal

functions can be evaluated with an accuracy of*#@or x > +/2 in the full range of orders
and degrees reachable for an overflow numberd®°. Similarly, we discussed how a
dual algorithm can be built which, by considering the connection (8) betwgertx) and
Qm-_1/2> Will also give toroidal functions for & x < /2 with a precision of at least 18
for all the orders and degrees reachable within overflow limits.

In this way, an extensive method of computation of toroidal harmonics can be built.

APPENDIX

Explicit Asymptotic Formulas

In this appendix we give an explicit algorithm to find the coefficiegti: the expansions
(19) (20). Previous to this, we will show that the coefficiemtsandby in Eq. (18) satisfy
the relations

bk =0, Dbai1 = 2a;1/0. (22)

As explained when we derived expansion (18), the coefficants, could be obtained
by considering that for=0, 1, ..

fi(u) = a + biu+ uu + a)gi (U,
fira(U) = U(U + ) g (U) + (v + D) (2u + a)gi (u), (23)
a = fi(0); b =(fi0)— fi(-a))/a.
However, we give now a strategy which is best suited for automatic computation usin
symbolic mathematical software package. This algorithm also allows us to prove Eq. (

with ease.
Let us write fj (u) in the form

fi(u) = Zc(”uk(u ) +ud d U+ o)k, (24)
k=0
from which follows thal; =c’, by = d’. Let us assume we know the coefficiecffs, d.”

for fo(u). Then the coefficients fof; (u), i > 1, can be obtained by recursion, because usin
the first two equations in (23) and a straightforward calculation, we can obtain the relatit
C(()'+1) v+ 1)010(')
otV = alk+v+1c)), + [2k+2v +1]d, k=1,2,..., (25)
di Y = 2k + v+ 1c ), —alk+v +1]dY),, k=0,1,2,...,
wherei =0, 1, .
The equatlons in (25) can be applied reiteratively to otataiac’’ andb; =d’,i =0, 1, .

starting from the coefficients” andd.”, which can be automatically generated by usmg
the following scheme.
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Consider Eqg. (24) for =0 and writeu = w — /2, then

fouw)) = > cw? —a?/2"+ (w —/2) > dPw? —a?/2*,  (26)
k=0 k=0

which gives pure power series by writing
w=+/v+a?/4 (27)
Then, defining

h1(v) := (fo(w — @/2) — fo(—w — @/2))/2w,

(28)
h2(v) = ((w + &/2) fo(w — @/2) + (w — a/2) fo(—w — a/2)) /2w,
we have
hi) = > dPv*, ha(w):=> 2k, (29)
k=0 k=0

and the first set of coefficientﬁo), bf<°) can be obtained as Taylor coefficients. In particular
for our definition of f (Eq. (13)), we have

hiv) =0=d® =0, k=0,1,...,
(30)

ho(v) := €/?g(v)”, g(v) = %(cosh\/v + (a/2)2 — cosha/2)).

Inthisway, the coefficiemio) are the Taylor coefficients of the expansiohgfv) in powers
of v, while we have shown tha:ﬁo) = 0. From these last conditions, it is straightforward to
check that

. _ a o
4@ =0, ¢V = %@+

i,k=01,... 31
2 9 I’ b e K ( )

and thus that relations (22) hold.
Then, the generation of the coefficiemtscan be summarized as follows: compute the

Taylor coefficients:ff’) for the expansion dfiz(v) (Eg. (30)) in powers ob; apply then the

recurrences (25) to obtain the coefficieats=c})’.

A more explicit algorithm follows by observing that the Taylor coefficients in the expat
sion ofg(v) (Eq. (30)) are related to the modified Bessel functibns,»(«/2). With this
interpretation (see also [1], Eq. (10.2.30) and Frenzen’s approach in [8]), the evaluatiol

the coefficients; can be summarized as follows:

1. Obtain the coefficients:
(i) Generate the coefficients, =
(ii) Starting fromhy

1 Int1/2(2/2) . .
GESFal ) by symbolic recursion.

=1 andh{” = vi, evaluate the coefficients;’ by using:

1 n
0 . [(0) 0
h' ) = vini1 + ] > =+ D[vaajah” = ahY ).
j=1
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2. Obtain the coefficienta; = hgj)ao, whereag = (%)", through the recurrence

. ) 2 )
hitY = alk+v +1]h{), + 1 - (—1)')&[2k +2v 4 1], (32)

After evaluating the exact coefficients one should expand them in powernsi@irder to

avoid roundoff errors ag — 0. As an example, we now give the first 3 coefficients which
we used in the section “Computational aspects” (fer —1/2)

a0 = \/a/(& — 1)

1 1 1
h(O) —a - _ = 3 _ 54 ...
1 =8/ =~ 780 oee®  120060° T )
7 13
h(o) —a — 2 _ 4 -
2 = %/%= 2555%" ~ 3oo8ed T
7 571
h(o) —a — _ 3 ..
3 = %/%= 7556 ~ 7580488 T

where series expansions in powersrahust also be considered for the computatioagpf

in

order to avoid roundoff errors for small
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